Comprehensive
In Vitro Proarrhythmia
Assay Initiative (CiPA):
Evolving Efforts

Gary Gintant
for the CiPA Steering Committee & volunteers
(CSRC/HESI/FDA/Japan Nat’n’l Inst. of Health Sciences, Health Canada, EMA, PDMA (Japan), Japan IPS Cardiac Safety Assessment, Safety Pharmacology Society, NCI, CRO’s Stem Cell providers, Platform providers, Academicians, Modelers, others)

CSRC Annual Meeting
October 18, 2016
CiPA: Comprehensive

doi: 10.1001/jama.1929.7.4.393

Goal:

- Develop a *new in vitro paradigm* for cardiac **safety evaluation** of new drugs

- Provide a more accurate and **comprehensive, non-binary mechanistic-based assessment of proarrhythmic potential**

- Focus on **proarrhythmia (not QT prolongation)** to improve **specificity** (versus preclinical hERG current & clinical TQT studies)
CiPA: Comprehensive *In Vitro* Proarrhythmia Assay

• **How?**

- Define effects on multiple human cardiac currents

- Characterize integrated electrophysiologic response using in silico reconstructions of human ventricular electrophysiology

- Categorize proarrhythmic risk based on clinically-ranked TdP risk

Verify effects on

 a) on human stem-cell derived myocytes, and
 b) early clinical QT (exposure response) studies
Components of CiPA

Drug Effects on Multiple Human Cardiac Currents

In Silico
Reconstruction
Cellular Human Ventricular Electrophysiology

In Vitro Effects
Human Stem-Cell Derived Ventricular Myocytes

Clinical Evaluation
Unanticipated Electrophysiology

Characterize/Classify Effects

Verify Effects
Define Effects on Multiple Human Cardiac Currents. Ion Channel Group

Goal:
- Provide robust ionic current data (human channels in heterologous expression systems) for in silico reconstructions of drug effects

How:
- Define requirements for reliable and reproducible ion channel data in high throughput screening (HTS) environment
- Produce consensus protocols for predominant channels
 - Seven currents proposed: INa, INaLate, Ito, ICaL, IKr, IKs, IK1

Challenges:
- Variability in data across platforms
- Static vs. kinetic data descriptions for hERG block
Characterize Integrated Electrophysiologic Response Using In Silico Reconstructions of Human Ventricular Electrophysiology.

In Silico Group

Goal:
- To develop an in silico model of adult human ventricular myocyte that predicts clinical risk of TdP for use in regulatory decision making
- O’Hara Rudy model (human based) identified as “Gold Standard”
- hERG channel kinetics modified to better describe repolarization effects

Challenges:
- Risk metric best suited for proarrhythmia: quantitative, continuous, conc.-dependent, mechanistically relevant
- Ability to distinguish 3 levels of clinical TdP risk (Low/no, Intermediate, High): ongoing
- Education/familiarity with in silico approaches
- Model availability for novel users/end users
Categorize Proarrhythmic Risk Based on Three-Tier Clinical Ranking of TdP Risk (CiPA 28 Drugs)

<table>
<thead>
<tr>
<th>High TdP Risk</th>
<th>Intermediate TdP Risk</th>
<th>Low TdP Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration:</td>
<td></td>
<td>Calibration:</td>
</tr>
<tr>
<td>Bepridil</td>
<td>Chlorpromazine</td>
<td>Diltiazem</td>
</tr>
<tr>
<td>Dofetilide</td>
<td>Cisapride</td>
<td>Mexiletine</td>
</tr>
<tr>
<td>Quinidine</td>
<td>Terfenadine</td>
<td>Ranolazine</td>
</tr>
<tr>
<td>D,l Sotalol</td>
<td>Ondansetron</td>
<td>Verapamil</td>
</tr>
<tr>
<td>Validation:</td>
<td></td>
<td>Validation:</td>
</tr>
<tr>
<td>Azimilide</td>
<td>Astemizole</td>
<td>Loratadine</td>
</tr>
<tr>
<td>Ibutilide</td>
<td>Clarithromycin</td>
<td>Metoprolol</td>
</tr>
<tr>
<td>Vandetanib</td>
<td>Clozapine</td>
<td>Nifedipine</td>
</tr>
<tr>
<td>Methadone</td>
<td>Domperidone</td>
<td>Nitrendipine</td>
</tr>
<tr>
<td></td>
<td>Droperidol</td>
<td>Tamoxifen</td>
</tr>
<tr>
<td></td>
<td>Pimozide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risperidone</td>
<td></td>
</tr>
</tbody>
</table>

Clinical Translational Working Group
Verify Electrophysiologic Effects Using Human Stem-Cell Derived Cardiomyocytes and Early Clinical QT (ER) Studies. Myocyte Group

Goal:
- Establish human stem cell derived cardiomyocytes as an integrating model system to identify potential gaps in electrophysiologic effects (not detected previously) that may impact TdP risk classification

How:
- Report on drug-induced repolarization abnormalities using multielectrode array (MEA) or voltage-sensing optical (VSO) technologies (focus on repolarization (FPD-APD), beat frequency, proarrhythmia events (EAD activity)

Progress:
HESI sponsored validation studies ongoing (“CiPA 28”)
Goal:
- Detect unexpected electrophysiological effects compared to preclinical ion channel data/in silico reconstructions (e.g. human specific metabolite, protein binding, channel modulation)

How:
- Early human phase 1 ECG evaluation
 a) QT prolongation (Exposure-response)
 b) QT morphological changes (J-Tpeak, Tpeak-Tend) to identify multi-ion channel effects on repolarization

Challenges:
- New ECG biomarker(s) would add additional information beyond PR/QRS/QTc
Summation

A new cardiac safety paradigm focused on nonclinical measurement of proarrhythmic proclivity

Focus on the real issue: *Proarrhythmia*

- Reduce the premature termination of drugs with favorable benefit:risk profiles
- Make drug development more efficient
- Provide a more comprehensive assessment of risk to earlier discovery phase, using assays to guide candidate selection and reducing later stage attrition
- Obviate the TQT study
- Enhance the accuracy with which existing and/or new drugs are labeled relative to actual proarrhythmic risks